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Abstract
SARS-CoV-2 (CoV-2) is a coronavirus which is causing the actual COVID-19 pandemic. The disease 
caused by 2019 new coronavirus (2019-nCoV) was named coronavirus disease-19 (COVID-19) 
by the World Health Organization in February 2020. Primary non-specific reported symptoms of 
2019-nCoV infection at the prodromal phase are malaise, fever, and dry cough. The most commonly 
reported signs and symptoms are fever (98%), cough (76%), dyspnea (55%), and myalgia or fatigue 
(44%). Nonetheless, recent reports suggest an association between COVID-19 and altered olfactory 
and taste functions, although smell seems to be more affected than taste. These associations 
of smell and taste dysfunctions and CoV-2 are consistent with case reports describing a patient 
with SARS with long term anosmia after recovery from respiratory distress, with the observation 
that olfactory function is commonly altered after infection with endemic coronaviruses, and with 
data demonstrating that intentional experimental infection of humans with CoV-2 99 raises the 
thresholds at which odors can be detected. Post-viral anosmia and is one of the leading causes of loss 
of sense of smell in adults, accounting for up to 40% cases of anosmia. Viruses that give rise to the 
common cold are well known to cause post-infectious loss, and over 200 different viruses are known 
to cause upper respiratory tract infections. I reviewed the possible mechanisms of smell and taste 
loss in COVID-19. I concluded that since the existence of such a relationship is likely, it is highly 
recommended that those patients who experience complications such as smell and/or taste loss, 
even as unique symptoms, should be considered as potential SARS-CoV-2 virus carriers.
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Introduction
SARS-CoV-2 (CoV-2) is a coronavirus which is causing the COVID-19 pandemic [1-5]. 

The disease caused by 2019 new coronavirus (2019-nCoV) was named coronavirus disease-19 
(COVID-19) by the World Health Organization in February 2020 [6-10].

The 2019-nCoV is phylogenetically related to severe acute respiratory syndrome-coronavirus 
(SARS-CoV) [1,11,12]. It has been shown that 2019-nCov enters the cell through the ACE2 cell 
receptor in the same way as the Severe Acute Respiratory Syndrome (SARS) coronavirus. 2019-
nCoV effectively uses Angiotensin Converting Enzyme 2 receptor (ACE2) as a receptor for cell 
invasion [13-19].

The current knowledge on SARS-CoV-2 is relative scarce, and most of it comes from deductions 
than actual data analysis [3,20-23]. Coronaviruses are known as enveloped viruses with a positive-
sense single-stranded RNA genome, and their helical symmetry nucleocapsid is about 26-32 
kilobases in size, making it the largest investigated genome among RNA viruses [23-25]. SARS-
CoV-2 is a beta coronavirus belonging to the 2B group [26-30]. It shares around 70-80% of its 
genome with SARS-CoV virus, but it shows to have the uppermost level of likeness with a horseshoe 
bat coronavirus [2,31-33]. Therefore, it is considered to be a recombinant virus transmitted from 
bats to human hosts by the mean of an intermediate host [34,35]. Being an RNA-virus with an RNA-
dependent RNA Polymerase (RNRP)-based replication, mutation and recombination are frequent 
events. Moreover, in spite of the name and genetic similarities, SARS-CoV-2 shows genetic and 
clinical differences with SARS-CoV [36-40].

Initial reports stated that primary non-specific reported symptoms of 2019-nCoV infection at 
the prodromal phase are malaise, fever, and dry cough. The most frequently described signs and 
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symptoms are fever (98%), cough (76%), dyspnea (55%), and myalgia 
or fatigue (44%) [5,41-46].

Nonetheless, recent reports suggest an association between 
COVID-19 and altered olfactory and taste functions, although smell 
seems to be more affected than taste [47]. These associations of smell 
and taste dysfunctions and CoV-2 are reliable with case reports 
relating a patient with SARS with long term anosmia after recovery 
from respiratory distress, with the observation that olfactory function 
is usually altered after infection with endemic coronaviruses, and 
with data indicating that deliberate experimental infection of humans 
with CoV-2 raises the thresholds at which smells can be sensed 
[48-52]. Highly published news on this issue came when National 
Basketball Association player Rudy Gobert trapped the coronavirus, 
and complained loss of smell and taste [51].

Post-viral anosmia and is one of the leading causes of loss of 
sense of smell in adults, accounting for up to 40% cases of anostmia. 
Viruses responsible of the common cold are well known to cause 
post-infectious loss of smell, and over 200 different viruses are known 
to cause upper respiratory tract infections. Previously descriptions of 
coronaviruses are supposed to account for 10-15% cases [26]. Hence, 
it is therefore conceivably to suppose that the novel SARS-CoV-2 
virus would also cause anosmia in infected patients [52].

Anosmia
Anosmia is the loss of the capability to detect one or more smells. 

Anosmia may be temporary or permanent. Full anosmia is reasonably 
rare related to hyposmia (a partial loss of smell), and dysosmia (a 
distortion or alteration of smell). Anosmia has different etiologies, 
such as inflammation of the nasal mucosa, blockage of nasal passages 
or a destruction of one temporal lobe. Inflammation is due to chronic 
mucosa changes in the lining of the paranasal sinus and in the middle 
and superior turbinates [47,52-61].

Ageusia
Ageusia is the loss of taste functions of the tongue, principally 

the incapability to sense sweetness, sourness, bitterness, saltiness, 
and umami, which means pleasant/savory taste. Ageusia is frequently 
confused with anosmia because the tongue can only indicate texture 
and distinguish between sweet, sour, bitter, salty, and umami, most 
of what is perceived as the sense of taste is certainly derivative from 
smell. Full ageusia is comparatively rare related to hypogeusia (a 
partial loss of taste), and dysgeusia (a distortion or alteration of taste). 
The foremost causes of taste disorders are head trauma, infections 
of upper respiratory tract, exposure to toxic substances, iatrogenic 
causes, medicines, and glossodynia (burning mouth syndrome). Head 
trauma can cause lesions in regions of the Central Nervous System 
(CNS) involved in processing taste stimuli, including thalamus, brain 
stem, and temporal lobes; it can also cause injury to neurological 
pathways involved in transmission of taste stimuli [52,56,59-63].

Nervous pathways of smell
The pathway of olfactory conduction begins with the olfactory 

receptors, which are small, slender nerve cells embedded in large 
numbers (about 100 million in the rabbit) in the epithelium of the 
mucous membrane lining the upper part of the nasal cavity. Each 
olfactory receptor cell emits two processes (projections). One of 
these is a short peripheral dendrite, which spreads to the surface of 
the epithelium, where it ends in a knob carrying a number of fine 
radially placed filaments, the olfactory hairs. The other process is a 
long and extremely thin axon, the olfactory nerve fiber, which reaches 

the cranial cavity by passing through one of the intros in the bony 
roof of the nasal cavity and arrives the olfactory bulb of the forebrain. 
Sensations of smell are experienced when certain chemical substances 
become dissolved in the thin layer of fluid covering the surface of the 
mucous membrane and then come in contact with the olfactory hairs. 
The receptor cells differ among themselves in their sensitivities to 
various odorous substances [64-74].

The olfactory epithelium, found within the nasal cavity, contains 
olfactory receptor cells, which have specialized cilia extensions. The 
cilia trap odor molecules as they pass across the epithelial surface. 
Information about the molecules is then transmitted from the 
receptors to the olfactory bulb in the brain. In the olfactory bulb, 
the olfactory nerve fibers end in contact with the antenna-shaped 
dendrites of the large mitral cells, which represent the second main 
link in the chain of olfactory conduction. Each mitral cell emits a 
long axon, many of which enter into the formation of the olfactory 
tract, a white fiber band extending back from the bulb over the 
basal surface of the forebrain. The olfactory tract distributes its 
fibers mainly to the cortex of the pyriform lobe, which constitutes 
the final cortical receiving area of the olfactory pathway. In humans 
this region corresponds to the uncus of the hippocampal gyrus. A 
smaller number of fibers of the olfactory tract end in two further 
olfactory structures; the olfactory tubercle and the medial part of the 
amygdaloid complex (the latter lies deep to the olfactory cortex). In 
the nasal passage lies the olfactory epithelium (mucous membrane) 
lined by olfactory receptors. These olfactory receptors contain Golf 
protein, which are stimulated by odor molecules. Upon stimulation, 
the Golf protein stimulates the release of a cyclic AMP catalyzing 
enzyme. When catalyzed, this cyclic AMP serves as a transmitter that 
signals the opening of sodium ion channels, leading to depolarization 
of the receptor cells [53,71,75-79].

Olfactory sensory input travels from the axons through the 
cribiform plate holes and mitral cell synapses. These mitral cells, found 
in the olfactory bulbs, comprise the olfactory tract. The information 
travels through the olfactory tract towards the primary olfactory 
cortex in the limbic system. This cortex transfers the information to 
three areas: the hypothalamus, the thalamus and the orbitofrontal 
cortex. The reception of olfactory input in the orbitofrontal cortex 
explains why we may perceive smell and taste at the same time 
[71,75,80-82].

Taste
The tongue contains small bumps called papillae, within or near 

which taste buds are situated. In the tongue’s taste buds, the taste 
receptors receive sensory input via two important mechanisms: 
depolarization and neurotransmitter release. Intake of salty foods 
leads more sodium ions to enter the receptor, causing the said 
mechanisms. The same is true with intake of sour foods (hydrogen 
ions) and sweet foods (sugar molecules), both of which result to the 
closing of K+ channels upon their entry. From the axons of the taste 
receptors, the sensory information is transferred to the three taste 
pathways via the branches of cranial nerves VII, IX and X. The chorda 
tympani of CN VII (facial nerve) carries the taste sensory input from 
the tongue’s anterior two-thirds. Then, the rest of the taste sensations 
from the throat, palate and posterior tongue are transmitted by the 
branches of CN IX (glossopharyngeal nerve) and CN X (vagus nerve). 
From these cranial nerves, taste sensory input travels through the 
nerve fiber synapses to the solitary tract, the ventral posteromedial 
thalamic nuclei, and the thalamus. In these three locations, there 
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are clustered neurons which respond to the same taste (sweet, sour, 
salty or bitter).The thalamus relays the information to the primary 
gustatory cortex located in the somatosensory cortex. The primary 
gustatory cortex is where the perception of a particular taste is 
processed [64,66,71,76,83-92].

Diagnosis of smell and taste loss
Anosmia can be diagnosed by doctors by using acetylcysteine 

tests. Doctors will begin with a detailed clinical history about 
particularities of smell and taste loss. Then the doctor will ask for 
any related injuries in relation to anosmia which could include upper 
respiratory infections or head injury.

Ageusia is assessed by measuring the lowest concentration of a 
taste quality that the subject can detect or recognize. The subject is 
also asked to compare the tastes of different substances or to note 
how the intensity of a taste grows when a substance's concentration is 
increased. Scientists have developed taste testing in which the patient 
responds to different chemical concentrations. This may involve a 
simple “sip, spit, and rinse” test, or chemicals may be applied directly 
to specific areas of the tongue [26,55,68,78,93-104].

Mechanisms leading to smell and taste sense loss by 
SARS-Cov-2

Smell loss can be caused by many things, including swelling in 
the nose and sinuses (such as chronic sinusitis), head injury, and 
nerve disorders (such as Parkinson’s disease). In some cases, no cause 
is found. The olfactory system is part of the upper respiratory tract 
in mammals and therefore, pathogens can reach other parts of the 
respiratory system once they effectively invade the olfactory mucosa. 
Known respiratory pathogens which infect the human olfactory 
organ include influenza virus, respiratory syncytial virus, rhinovirus, 
Staphylococcus aureus, S. pneumoniae. The upper respiratory system 
is also connected to the gastrointestinal tract via the esophagus and 
therefore it is possible for pathogens that cause gastric infection can 
produce nasal diseases. Although this route is less well studied, some 
examples may include human bocavirus, human rotavirus, Epstein-
Barr virus and Salmonella enteric [26,50,105,106].

Loss of smell because of a viral infection, such as the common 
cold, is the second most common cause of smell loss and accounts 
for about 12% of all cases of anosmia. These episodes typically 
happen when the virus infects the nose, giving rise to the usual cold 

symptoms, including a blocked or runny nose. Sense of smell usually 
recovers once symptoms diminish. But sometimes even when other 
symptoms disappear, sense of smell doesn’t subside, or in some cases 
it’s reduced (hyposmia), or is distorted (parosmia).

In these cases, the virus has damaged the smell receptors causing 
them to lose the fine, hair-like endings that allow them to pick up 
smell molecules from the nasal mucus. Preceding studies have looked 
at which viruses cause this condition, and many have been implicated, 
with the coronavirus family of which COVID-19 is a member [26,49, 
50,52,105,106].

The anatomical organization of the human olfactory system 
makes it an attractive site for pathogens to get into the host. The 
olfactory system is directly connected to the CNS via the olfactory bulb 
and consequently frequent neurotropic agents including parasites, 
bacteria and viruses can reach the CNS via transport lengthways to 
the olfactory nerve [54,71,75,76,107-110].

Several reports have evaluated coronavirus’s effects on the CNS. 
These studies suggest that the human CNS may be vulnerable to 
coronavirus infection. The routes for CNS infection with coronaviruses 
are peripheral trigeminal or olfactory nerves following intranasal 
inoculation. Studies on rodents demonstrate that these viruses cause 
demyelination and stimulate T cell-mediated autoimmune reactions 
against CNS antigens. This fact has raised the question about the 
relationship between coronaviruses, particularly the 2019-nCoV, 
and neurologic disorder in humans. Considering that the peripheral 
trigeminal or olfactory nerves are pathways of penetration of the 
coronaviruses into the CNS, and based on animal studies, it may be 
theorized that complications, such as demyelination and stimulation 
of T cell-mediated autoimmune reactions, may happen in the path of 
the infection dispersion, so the incidence of dyssomnia and dysgeusia 
can be painstaking potential consequences of these nerve injuries 
[26,49-52,105,106].

A virus typically arrives the body by imbedding itself and infecting 
host cells thru the body, such as in the airways or the gut, and then 
replicating. During the acute phase of a viral cold a patient may 
experience nasal congestion and blockage caused by nasal obstruction, 
membrane edema and excess nasal secretions. This congestion may 

Figure 1: Smell mechanisms: Olfactory epithelium.

Figure 2: Taste mechanisms: Taste buds and papillae of the tongue.
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cause momentary loss of smell and taste but with recovery from the 
cold, over time, these nasal symptoms vanish, ease of nasal breathing 
is recommenced and smell and taste function usually recur as they 
did prior to the onset of the viral cold [26,50,103,105,106,111-113].

SARS-CoV-2 is believed to enter the nasal and mouth tissues 
through the Angiotensin Converting Enzyme 2 (ACE2) receptor, 
although more research is needed to approve whether this is the 
case. This protein is copious in the nose, although its function is not 
clear. By entering the nose and mouth through this protein, it may 
cause temporary damage to the smell and taste nerves. However, this 
damage appears to get better within one to two weeks after the onset 
of the disease [13-15,17,19]. Stem cells have probably a role on smell 
and taste recovering [49].

It has been hypothesized that a viral replication process is present 
in the protein secreting glands in the nose and the mouth which 
is sustained by a dynamic process involving nonstop rounds of de 
novo virus infection and replication. Hence, the initial systemic viral 
infection the viral RNA arrives into specific protein secreting glands 
in the nose and mouth, replicating their genomes. These are usually 
single stranded RNAs which may produce viral factories that can 
direct the products of proteins and construction of new viral particles 
which can infect these glands. Whereas the systemic viral infection 
is eliminated this local process can endure to generate viral RNA, 
which is toxic to the protein secretions generated by these protein 
secreting glands. This toxicity can constrain secretion of some of the 
endogenously secreted proteins, so-called growth factors, produced 
by these glands. These endogenous proteins consist of multiple 
chemical moieties including cAMP, cGMP and sonic hedgehog. Stem 
cells, which maintain the receptors of both olfactory epithelial cells 
for smell and taste bud receptor cells for taste, necessitate continual 
stimulation by these secreted proteins for these receptors to function. 
As these receptors turnover as rapidly as every 24 hours, inhibition 
of these secretions inhibits receptor growth causing loss of smell and 
taste [24,49,52,55,114-118].

Reports in both mouse and human datasets demonstrate that 
olfactory sensory neurons do not express two key genes involved in 
CoV-2 entry, ACE2 and TMPRSS2. In contrast, olfactory epithelial 
support cells and stem cells express both of these genes, as do cells 
in the nasal respiratory epithelium. These findings suggest possible 
mechanisms through which CoV-2 infection could lead to anosmia 
or other forms of olfactory dysfunction [14,15,17,19,49,52].

Conclusion
Although definitive reports of pervasive CoV-2-associated 

anosmia have not yet been finally proved, these findings raise the 
question of how CoV-2 might affect processing mechanisms to 
change smell and taste perception in COVID-19 patients [26,48-52].

Since the existence of such a relationship is likely, it also seems 
likely that during the COVID-2019 outbreak, those who experience 
complications such as smell and/or taste loss, even as unique 
symptoms, should be considered as potential SARS-CoV-2 virus 
carriers.
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